Building Intelligent User Interfaces with Blazor and AI

Summary: Explore how to integrate AI capabilities directly into Blazor applications to create intelligent, adaptive, and responsive user interfaces. Learn how to leverage AI for features like natural language understanding, personalized content, predictive input, and automated UI adjustments, enhancing the overall user experience.

Introduction

Modern user interfaces (UIs) are evolving beyond static layouts and predefined interactions. Users increasingly expect applications to be intelligent, adaptive, and responsive to their needs and context. Integrating Artificial Intelligence (AI) directly into the UI layer can unlock a new level of user experience, making applications more intuitive, personalized, and efficient.

Blazor, Microsoft’s framework for building interactive web UIs with C# and .NET, provides a powerful platform for creating rich client-side applications. When combined with AI technologies, Blazor enables developers to build truly intelligent user interfaces that can understand user intent, anticipate needs, and dynamically adapt to provide a seamless and engaging experience.

In this article, we’ll delve into the exciting possibilities of building intelligent UIs with Blazor and AI. We’ll explore various ways AI can enhance the user interface, from natural language processing and personalized content delivery to predictive input and automated UI adjustments. We’ll provide practical examples and code snippets demonstrating how to integrate AI capabilities using Azure AI services and other .NET libraries directly within your Blazor applications.

The Role of AI in Modern User Interfaces

AI can transform user interfaces in numerous ways, moving beyond simple automation to create truly intelligent and adaptive experiences:

  1. Natural Language Understanding (NLU): Enabling users to interact with the application using natural language commands or queries.
  2. Personalization: Tailoring UI elements, content, and recommendations based on individual user preferences, behavior, and context.
  3. Predictive Input: Anticipating user input and providing intelligent suggestions or auto-completions.
  4. Adaptive Layouts: Dynamically adjusting the UI layout and content presentation based on user goals, device, or environment.
  5. Intelligent Assistance: Providing proactive help, guidance, or suggestions within the UI.
  6. Automated Content Generation: Using AI to generate summaries, descriptions, or other UI text content dynamically.
  7. Sentiment Analysis: Understanding user sentiment expressed through text input or feedback to adapt the UI or trigger specific actions.
  8. Accessibility Enhancements: Leveraging AI to automatically improve accessibility features, such as generating image descriptions or providing alternative interaction methods.

By integrating these AI capabilities, developers can create UIs that are not just functional but also intuitive, engaging, and highly personalized.

Setting Up a Blazor Project for AI Integration

Let’s start by setting up a Blazor Web App project configured for AI integration.

Prerequisites

  • Visual Studio 2022 or Visual Studio Code
  • .NET 9 SDK
  • Azure account with access to Azure AI services (like Azure OpenAI, Azure AI Language, Azure AI Vision)
  • Basic knowledge of Blazor, C#, and .NET development

Creating a New Blazor Web App

We’ll create a new Blazor Web App project using the .NET CLI:

bash

# Create a new Blazor Web App (Auto render mode)
dotnet new blazor -o BlazorAIUI --interactivity Auto --all-interactive
cd BlazorAIUI

# Add necessary NuGet packages
dotnet add package Azure.AI.OpenAI
dotnet add package Azure.AI.Language.Conversations
dotnet add package Azure.AI.TextAnalytics
dotnet add package Microsoft.Extensions.Http

Configuring Azure AI Services

Add your Azure AI service credentials to appsettings.json:

json

// appsettings.json
{
  "AzureOpenAI": {
    "Endpoint": "https://your-openai-service.openai.azure.com/",
    "ApiKey": "your-openai-service-key",
    "DeploymentName": "gpt-4", // Or your preferred chat model
    "EmbeddingDeploymentName": "text-embedding-ada-002"
  },
  "AzureAILanguage": {
    "Endpoint": "https://your-language-service.cognitiveservices.azure.com/",
    "ApiKey": "your-language-service-key",
    "ProjectName": "your-clu-project-name", // For Conversational Language Understanding
    "DeploymentName": "your-clu-deployment-name"
  },
  "Logging": {
    "LogLevel": {
      "Default": "Information",
      "Microsoft.AspNetCore": "Warning"
    }
  },
  "AllowedHosts": "*"
}

Setting Up Dependency Injection

Register the necessary services in Program.cs:

csharp

// Program.cs (relevant parts )
using Azure;
using Azure.AI.OpenAI;
using Azure.AI.Language.Conversations;
using Azure.AI.TextAnalytics;
using BlazorAIUI.Client.Services; // Assuming services are in Client project for Auto mode

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddRazorComponents()
    .AddInteractiveServerComponents()
    .AddInteractiveWebAssemblyComponents();

// Register Azure AI Clients
builder.Services.AddSingleton(sp =>
{
    var config = sp.GetRequiredService<IConfiguration>();
    return new OpenAIClient(
        new Uri(config["AzureOpenAI:Endpoint"]!),
        new AzureKeyCredential(config["AzureOpenAI:ApiKey"]!));
});

builder.Services.AddSingleton(sp =>
{
    var config = sp.GetRequiredService<IConfiguration>();
    return new ConversationAnalysisClient(
        new Uri(config["AzureAILanguage:Endpoint"]!),
        new AzureKeyCredential(config["AzureAILanguage:ApiKey"]!));
});

builder.Services.AddSingleton(sp =>
{
    var config = sp.GetRequiredService<IConfiguration>();
    return new TextAnalyticsClient(
        new Uri(config["AzureAILanguage:Endpoint"]!),
        new AzureKeyCredential(config["AzureAILanguage:ApiKey"]!));
});

// Register custom application services (example)
builder.Services.AddScoped<NaturalLanguageService>();
builder.Services.AddScoped<PersonalizationService>();
builder.Services.AddScoped<SentimentAnalysisService>();

// Add HttpClient for client-side services
builder.Services.AddScoped(sp => new HttpClient { BaseAddress = new Uri(builder.Configuration.GetSection("BaseUri").Value ?? builder.HostEnvironment.BaseAddress) });

var app = builder.Build();

// Configure the HTTP request pipeline.
if (app.Environment.IsDevelopment())
{
    app.UseWebAssemblyDebugging();
}
else
{
    app.UseExceptionHandler("/Error");
    app.UseHsts();
}

app.UseHttpsRedirection();
app.UseStaticFiles();
app.UseAntiforgery();

app.MapRazorComponents<BlazorAIUI.Components.App>()
    .AddInteractiveServerRenderMode()
    .AddInteractiveWebAssemblyRenderMode()
    .AddAdditionalAssemblies(typeof(BlazorAIUI.Client._Imports).Assembly);

app.Run();

Implementing Natural Language Interaction

Let’s create a Blazor component that allows users to interact using natural language, leveraging Azure AI Language’s Conversational Language Understanding (CLU).

Natural Language Service

First, create a service to handle interactions with the CLU model.

csharp

// Client/Services/NaturalLanguageService.cs
using Azure;
using Azure.AI.Language.Conversations;
using System.Threading.Tasks;
using Microsoft.Extensions.Configuration;

namespace BlazorAIUI.Client.Services
{
    public class NaturalLanguageService
    {
        private readonly ConversationAnalysisClient _client;
        private readonly string _projectName;
        private readonly string _deploymentName;

        public NaturalLanguageService(ConversationAnalysisClient client, IConfiguration configuration)
        {
            _client = client;
            _projectName = configuration["AzureAILanguage:ProjectName"]!;
            _deploymentName = configuration["AzureAILanguage:DeploymentName"]!;
        }

        public async Task<ConversationAnalysisResult?> UnderstandTextAsync(string userId, string query)
        {
            try
            {
                var data = new
                {
                    analysisInput = new
                    {
                        conversationItem = new
                        {
                            id = userId,
                            text = query,
                            modality = "text",
                            language = "en",
                            participantId = userId
                        }
                    },
                    parameters = new
                    {
                        projectName = _projectName,
                        deploymentName = _deploymentName,
                        // Use Utf16CodeUnit for strings in .NET.
                        stringIndexType = "Utf16CodeUnit",
                    },
                    kind = "Conversation",
                };

                Response response = await _client.AnalyzeConversationAsync(RequestContent.Create(data));

                dynamic conversationalTaskResult = response.Content.ToDynamicFromJson();
                dynamic conversationPrediction = conversationalTaskResult.results.prediction;

                // Process the result (simplified example)
                var result = new ConversationAnalysisResult
                {
                    TopIntent = conversationPrediction.topIntent,
                    Entities = new List<ConversationEntityResult>()
                };

                foreach (dynamic entity in conversationPrediction.entities)
                {
                    result.Entities.Add(new ConversationEntityResult
                    {
                        Category = entity.category,
                        Text = entity.text,
                        ConfidenceScore = entity.confidenceScore
                    });
                }
                return result;
            }
            catch (RequestFailedException ex)
            {
                Console.WriteLine($"Error understanding text: {ex.Message}");
                return null;
            }
        }
    }

    public class ConversationAnalysisResult
    {
        public string? TopIntent { get; set; }
        public List<ConversationEntityResult> Entities { get; set; } = new();
    }

    public class ConversationEntityResult
    {
        public string? Category { get; set; }
        public string? Text { get; set; }
        public double ConfidenceScore { get; set; }
    }
}

Natural Language Input Component

Now, create a Blazor component for the natural language input.

razor

@* Components/Shared/NaturalLanguageInput.razor *@
@using BlazorAIUI.Client.Services
@inject NaturalLanguageService NluService
@inject NavigationManager NavigationManager

@rendermode InteractiveAuto

<div class="input-group mb-3">
    <input type="text" class="form-control" placeholder="What would you like to do? (e.g., 'show me products under $50')" @bind="_userInput" @onkeyup="HandleKeyUp" />
    <button class="btn btn-primary" @onclick="ProcessInput" disabled="_isProcessing">
        @if (_isProcessing)
        {
            <span class="spinner-border spinner-border-sm" role="status" aria-hidden="true"></span>
        }
        else
        {
            <span>Go</span>
        }
    </button>
</div>

@if (_errorMessage != null)
{
    <div class="alert alert-danger">@_errorMessage</div>
}

@if (_analysisResult != null)
{
    <div class="alert alert-info">
        <strong>Intent:</strong> @_analysisResult.TopIntent <br />
        @if (_analysisResult.Entities.Any())
        {
            <strong>Entities:</strong>
            <ul>
                @foreach (var entity in _analysisResult.Entities)
                {
                    <li>@entity.Category: @entity.Text (@entity.ConfidenceScore.ToString("P1"))</li>
                }
            </ul>
        }
    </div>
}

@code {
    private string _userInput = string.Empty;
    private bool _isProcessing = false;
    private string? _errorMessage;
    private ConversationAnalysisResult? _analysisResult;

    // Assume a simple user ID for demonstration
    private string _userId = "user123";

    private async Task ProcessInput()
    {
        if (string.IsNullOrWhiteSpace(_userInput))
            return;

        _isProcessing = true;
        _errorMessage = null;
        _analysisResult = null;
        StateHasChanged();

        try
        {
            _analysisResult = await NluService.UnderstandTextAsync(_userId, _userInput);
            if (_analysisResult != null)
            {
                // Trigger actions based on intent and entities
                await HandleIntentAsync(_analysisResult);
            }
            else
            {
                _errorMessage = "Could not understand the input.";
            }
        }
        catch (Exception ex)
        {
            _errorMessage = $"An error occurred: {ex.Message}";
        }
        finally
        {
            _isProcessing = false;
            StateHasChanged();
        }
    }

    private async Task HandleIntentAsync(ConversationAnalysisResult result)
    {
        // Example: Navigate based on intent
        switch (result.TopIntent?.ToLowerInvariant())
        {
            case "findproducts":
                var priceEntity = result.Entities.FirstOrDefault(e => e.Category == "Price");
                var categoryEntity = result.Entities.FirstOrDefault(e => e.Category == "Category");
                string url = "/products";
                var queryParams = new List<string>();
                if (priceEntity != null) queryParams.Add($"maxPrice={priceEntity.Text}");
                if (categoryEntity != null) queryParams.Add($"category={categoryEntity.Text}");
                if (queryParams.Any()) url += "?" + string.Join("&", queryParams);
                NavigationManager.NavigateTo(url);
                break;
            case "vieworders":
                NavigationManager.NavigateTo("/orders");
                break;
            // Add more intent handling logic
            default:
                // Maybe use OpenAI to generate a response or perform a search
                break;
        }
        await Task.CompletedTask; // Placeholder
    }

    private async Task HandleKeyUp(KeyboardEventArgs e)
    {
        if (e.Key == "Enter")
        {
            await ProcessInput();
        }
    }
}

This component takes user input, sends it to the NaturalLanguageService, displays the understood intent and entities, and can trigger actions like navigation based on the results.

Implementing UI Personalization

AI can personalize the UI by dynamically showing relevant content or adjusting layouts based on user profiles or behavior.